
Towards Model-based Approximate Query Processing

Moritz Kulessa
Knowledge Engineering Group

TU Darmstadt

Benjamin Hilprecht
Data Management Lab

TU Darmstadt

Alejandro Molina
Machine Learning Lab

TU Darmstadt

Kristian Kersting
Machine Learning Lab

TU Darmstadt

Carsten Binnig
Data Management Lab

TU Darmstadt

ABSTRACT
In this paper, we present a new approach to Approximate
Query Processing (AQP) called Model-based AQP that lever-
ages deep generative models learned over a dataset to answer
SQL queries at interactive speeds. Different from classical
AQP approaches, deep generative models allow us not only
to compute approximate responses to ad-hoc queries even
over rare sub-populations but additionally support a new
class of queries called counterfactual queries enabling users
to ask what-if queries. Furthermore, we think that deep gen-
erative models can not only be used for AQP in databases
but also have other applications for problems such as Query
Optimization as well as Data Cleaning.

1. INTRODUCTION

Motivation. Interactive data exploration is an important
tool allowing users to get an overview on new datasets. How-
ever, database systems do not offer interactive speeds for
larger datasets. Hence, the database community has been
working on different techniques for AQP which ensure fast
query responses.

Unfortunately, existing AQP approaches suffer from vari-
ous limitations that restrict the applicability to support the
ad-hoc exploration of a new dataset [6]: (1) AQP approaches
that are based on online sampling (e.g., DBO [8], CON-
TROL [7], approXimateDB [10]) are able to support ad-
hoc queries but can only provide good approximations for
queries over the mass of the distribution, while queries over
rare sub-populations yield results with loose error bounds or
even result in missing values in the query results. (2) AQP
approaches that rely on offline sampling can use some form
of biased sampling to mitigate this problem (e.g., AQUA [1],
BlinkDB [2]), but therefore usually require a priori knowl-
edge of the workload which is often not realistic if users want
to explore a new database using ad-hoc queries.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and AIDB 2019.
1st International Workshop on Applied AI for Database Systems and Appli-
cations (AIDB’19), August 26, 2019, Los Angeles, California, CA, USA.

Contribution. In this paper, we propose a new approach
for AQP called Model-based AQP that leverages deep gen-
erative models learned over the complete database to answer
SQL queries at interactive speeds. Different from classical
AQP approaches, deep generative models allow us not only
to compute approximate responses to ad-hoc queries but
additionally support counterfactual queries allowing users
to ask what-if queries and validate hypotheses.

The idea of our approach is that deep generative models
are either able to directly provide probability estimates that
can be used to compute the results of simple count queries
or to generate samples for more complex queries that could
even include user-defined functions. In addition, we present
an algorithm that supports the computation of expectations
to allow average and sum aggregations.

In this work, we focus on pure analytical workloads where
data is not updated online such as in data warehouses. How-
ever, recent methods for online learning of deep generative
models [9] can be used to keep the model up to date as new
data arrives. Furthermore, if the statistical properties of
the data after the update do not change significantly, the
approximate predictions would be similar. In this case, we
can instead reuse the deep generative model and only need to
update the meta-data (i.e., table sizes). Detecting this case
efficiently is an interesting avenue for future work though.

We believe that deep generative models are also applicable
to other problems in data management such query optimiza-
tion or data cleaning. For instance, they could provide more
accurate cardinality estimates for highly correlated data or
they could be used for missing value imputation.

Outline. The remainder of this paper is organized as fol-
lows: In Section 2, we first give an overview of Model-based
AQP and discuss the requirements a deep generative model
has to fulfill to be used for AQP. We then show how SQL
queries can be compiled into an Sum-Product-Network infer-
ence procedure using two different execution strategies based
in Sections 3 and 4. Furthermore, we show that Model-
based AQP is also able to answer counterfactual queries in
Section 5. To validate the efficiency of our novel query pro-
cessing approaches, we present our initial evaluation results
using a real-world dataset in Section 6.

2. OVERVIEW
The main idea of Model-based AQP is shown in Figure

1. The deep generative model is built once over the orig-
inal (potentially large) database and then used to answer
SQL queries for data exploration in an interactive man-

1



Online (at Runtime)Offline

Database Generative Model Q2: 
Select AVG(net(salary)) 
From Census 
Where Gender = Female
AND salary >=500k

Q1: 
Select COUNT(*) 
From Census 
Where Gender = Female
AND salary >=500k

P(gender=female)*|Census|=0.0001*1m

sample-salary

700k
700k
1m

AVG(net(sample-salary))=640k 

Sample-based

Probability-based

Figure 1: Overview of Model-based AQP.

Listing 1: Basic SQL-query with an aggregation.

SELECT G, AGGR(A) FROM T WHERE E GROUP BY G

ner. The general approach of Model-based AQP is thus
similar to classical AQP creating a sample offline, which is
used at runtime to answer queries. However, different from
the sampling-based approaches Model-based AQP does not
need to know the workload a priori (i.e., queries) to deal
with rare sub-populations. In this paper, we support aggre-
gate SQL queries with and without filter predicates as well
as with and without group-by statements for Model-based
AQP. Furthermore, we support user-defined functions and
general arithmetic expressions to be used instead of base at-
tributes. Joins and nested queries are not covered in this
paper, but represent an interesting avenue for future work.

For approximate query processing, Model-based AQP pro-
vides different strategies as shown on the right-hand side of
Figure 1: a probability-based strategy and a sample-based
strategy. As shown on the right-hand side for query Q1, the
probability-based strategy translates the given SQL query
directly into an inference procedure and uses the resulting
probability as well as statistics (i.e., the size of the table)
to answer the query. The sample-based strategy instead is
shown for query Q2. In this strategy the model is used to
generate samples and then the samples are used to answer
the query. Indeed, the probability-based strategy is more ef-
ficient than the sample-based strategy but can only be used
for simple aggregate queries without user-defined functions
or arithmetic expressions.

An essential requirement for Model-based AQP is that a
deep generative model must enable tractable inference in hy-
brid domains, consisting of continuous and categorical dis-
tributions to support arbitrary database schemata. In par-
ticular, Mixed Sum-Product Networks (SPNs) [11] provide
probability estimates and sample creation of even rare sub-
populations and mixed domains with a complexity linear on
the size of the model. We adapted the original SPNs with
a modified leaf architecture and algorithms for the compu-
tation of expectations and counterfactual queries to make
them suitable for AQP.

3. STRATEGY I: PROBABILITY-BASED
First, we want to introduce a query execution strategy

that relies on expectation and probability estimations based
on SPNs. This strategy is preferred since no samples have to
be drawn and thus it is the most efficient strategy. However,
it is only applicable to simple aggregate queries with no user-
defined functions.

The main idea of this strategy is that a given SQL query
as shown in Listing 1 can be parsed to obtain conditions
corresponding to the filter predicate E and the group-by
attributes G. Depending on the aggregation function, we
have to perform different computations on the SPN. In the
following, we discuss the details of the computation for the
aggregation functions COUNT, AVG and SUM. MIN and
MAX as well as other aggregation functions are currently
not supported similar to other AQP approaches.

COUNT. To provide an answer for a query with the ag-
gregation function COUNT we have to determine the num-
ber of entries of the queried sub-population defined by E.
This can be estimated by multiplying the table size |T | with
the probability for the sub-population P (E). Moreover, in
case of a grouping we additionally have to analyze this sub-
population with respect to the individual groups g defined
by G yielding P (E ∧ g) ∗ |T |.

Here, the probability P (E ∧ g) represents that a record
fulfills the filter condition E and is in the group g. In case
E and g share conditions on same columns, these conditions
are combined by taking the intersection of the set of possible
values or value ranges. If the query does not specify a group-
by statement the computation simplifies to P (E) ∗ |T |.

AVG. For the computation of an AVG aggregation, we rely
on the computation of expectations for the aggregation at-
tribute A with SPNs. In case A is an arithmetic expres-
sion of columns, a result for the query can be computed
if only the operators for addition and subtraction are used.
With respect to these operators, we first compute the expec-
tation for every single column of A individually which are
then added or subtracted afterwards. In contrast, arithmetic
expressions with multiplication and division operators can-
not be computed with the probability-based approach. The
computation of the approximation for each particular group
g ∈ G according to the sub-population E is then given by
E(A|E ∧ g)

SUM. The computation of the result for a SUM aggrega-
tion can be reduced to the computation of a COUNT and
an AVG aggregation by multiplying the respective results:
E(A|E ∧ g) ∗ P (E ∧ g) ∗ |T |. For the same reason as for the
AVG aggregation, the SUM aggregation can only be applied
on single columns and on arithmetic expressions of columns
which use the operators addition and subtraction. In any
other case, no result with the probability-based approach
can be computed and the sample-based approach, which is
discussed next, will be used.

2



4. STRATEGY II: SAMPLE-BASED
In addition to the probability-based approach, the ability

to generate samples with an SPN offers us another way to
approximate the result for more complex aggregation queries
which use user-defined functions or arithmetic expressions.
Contrary to classical sample-based approaches for AQP, we
can use the SPN to produce samples at query time without
even accessing the real data. In particular, we are able to
generate biased samples, which is one of the most significant
advantages. In this work we propose three different sampling
techniques which are explained in the following sections.

Random Sampling. First, as a baseline we introduce the
generation of random samples with the SPN for which we use
the sample functionality of the SPN without specifying any
conditions. Like for classical random sampling from data, we
face the issue that samples can be generated which are not
relevant for answering the submitted query. In particular, if
the SQL query is only applied on a small sub-population of
the data many generated samples are discarded.

By using random samples, the query result can be approx-
imated. In case of an AVG aggregation, no modifications
have to be made since the result of an AVG aggregation is in-
dependent of the number of entries on which it is computed.
In contrast, COUNT and SUM aggregations depend on the
number of samples on which they are computed. Therefore,
we have to scale-up the result of these aggregations to get
the approximation. This is done by multiplying the result
with the total number of entries of the data |T | divided by
the number of the samples |S| which have been generated:

mrandom = |T |
|S| .

Relevance Sampling. In order to avoid the generation of
irrelevant samples, we use another more advanced approach
called relevance sampling. This approach only generates
samples for the queried sub-population defined by the filter
predicate E. Compared to the random sampling approach,
we can improve the efficiency of approximating the result,
especially for rare sub-populations, since we do not have
to discard any samples. For instance, if only 1% of the
data is relevant to answer the SQL query, then the relevance
sampling approach is one hundred times more efficient than
the random sampling approach to obtain the same precision
for the approximation.

Due to the sample generation, the approximation of the
result for the aggregation is different compared to random
sampling. To scale-up the result of COUNT and SUM ag-
gregation queries, we further need to multiply the result
with the probability P (E) of the sub-population of the data.
This probability is obtained by performing inference for the
sub-population specified by the filter E. The respective mul-

tiplier used to scale-up the result is mrelevance = |T |
|S|P (E).

Stratified Sampling. The relevance sampling approach is
already a major improvement for the approximation of ag-
gregation results compared to random sampling but it ig-
nores the grouping of the SQL query. Each specific queried
group should obtain an approximation as fast as possible.
However, the relevance method does not consider the selec-
tivity of the queried groups which, in fact, can be skewed.
Hence, particular groups will obtain more samples to ap-
proximate the result than other groups which has an effect

Listing 2: Counterfactual query.

SELECT . . . GROUP BY G WITH C TO X

on the precision of the approximations.
This problem can be solved with the stratified sampling

approach which can generate samples for each particular
group g independently. For rare groups we restrict the num-
ber of samples to avoid an over-representation. In particular,
we only generate as many samples for a particular group as
tuples of that group are available in the original data. This
information can be obtained by performing inference on the
SPN with the conditions for that particular group. The re-
maining number of samples, are distributed evenly over the
other groups.

Similar to relevance sampling, we have to adapt the com-
putation of the approximation, because we rely on biased
sampling. Since we are generating the samples for each
group independently, the aggregation result has to be ap-
proximated for each group on its own. Similar to the other
proposed sampling approaches, the multiplier only needs to
be applied to scale-up the result of the COUNT and SUM

aggregations: mstratified(g) = |T |
|S(g)|P (E ∧ g), where |S(g)|

represents the number of samples of a group g.

5. COUNTERFACTUAL QUERIES
Often in interactive data exploration, the question arises

what the impact of a slightly different distribution of the
population would be. For example a clothing company might
wonder how the annual sales would change, if the number
of high income customers was 50 percent higher. This can
have an impact on future decision making of the company
such as addressing a specific customer group with the adver-
tisement. As stated in [3], a counterfactual sentence has the
form of ’If A was true, then C would have been true’ where
A specifies an event that is contrary to one’s real world ob-
servations and C specifies the result that is expected to hold
in the alternative world where A is true. This idea can be
transferred to aggregation queries such as the ones of List-
ing 1 as well. In this case we are interested in the change
of the aggregate given that a certain sub-population is in-
creased or decreased.

For the representation of counterfactual queries we intro-
duce a new SQL extension as shown in Listing 2. Here, C
represents the combination of conjunctive conditions defin-
ing the sub-population and X defines the scaling factor. To
support this class of queries, we developed an algorithm that
allows to answer such queries efficiently with SPNs. Before
our AQP techniques are executed, the SPN is adapted to the
changed population defined by the counterfactual condition.

6. INITIAL EXPERIMENTAL RESULTS
As a major aspect of our initial experimental evaluation,

we evaluate our proposed AQP techniques on a real-world
dataset containing U.S. domestic flights [4] and used the
data generator of [5] to scale it to 10M instances. As base-
lines we compare our model-based AQP approaches to ran-
dom sampling from data and exact SQL. We did not com-
pare to approaches that rely on offline sampling such as [2]
since these approaches require that the workload is known
in advance; i.e., they do not support ad-hoc queries.

In order to evaluate our approaches, we provide a variety
of different queries where we not only varied the aggregation

3



F1.2 F1.2 F2.1 F2.2 F2.3 F3.1 F3.2 F3.3 F4.1 F4.2 F5.1 F5.2
0.00

0.25

0.50

0.75

1.00
av

er
ag

e
re

la
ti

ve
er

ro
r

no
an

al
yt

ic
re

su
lt

no
an

al
yt

ic
re

su
lt

exact SQL

random sampling data

random sampling SPN

relevance sampling SPN

stratified sampling SPN

probability-based SPN

F1.2 F1.2 F2.1 F2.2 F2.3 F3.1 F3.2 F3.3 F4.1 F4.2 F5.1 F5.2
0.00

0.25

0.50

0.75

1.00

ex
ec

ut
io

n
ti

m
e

in
se

co
nd

s

no
an

al
yt

ic
re

su
lt

no
an

al
yt

ic
re

su
lt

Figure 2: Results of the average relative error and the execution time for all queries.

function but also the number of group-by values and the
selectivity (sel) as shown in the following table as queries
(F1.1 to F5.2 ). The query set includes also some complex
queries with UDFs (F5.1 and F5.2 ) where our probability-
based approaches could not be applied and thus we resorted
to sampling from the model:

identifier aggregation groups sel in % skewness

F 1.1 AVG 1 ∼ 5.6000 -
F 1.2 AVG 1 ∼ 1.3800 -

F 2.1 COUNT 26 ∼ 1.0000 1.4343
F 2.2 COUNT 26 ∼ 0.1260 1.4122
F 2.3 COUNT 22 ∼ 0.0140 0.4719

F 3.1 SUM 22 ∼ 1.0000 0.0329
F 3.2 SUM 53 ∼ 0.1200 2.4420
F 3.3 AVG 26 ∼ 0.1500 1.4735

F 4.1 COUNT 53 ∼ 1.3600 2.4234
F 4.2 COUNT 26 ∼ 0.1000 1.5480

F 5.1 SUM 22 ∼ 0.1402 0.2504
F 5.2 SUM 53 ∼ 0.5213 2.4838

The skewness of the group-by column Y is computed as:

skewness(Y ) =

∑|Y |
i=1(Yi − Ȳ )3/|Y |

std(Y )3
(1)

The results for the average relative error and the execution
time for all evaluated queries are shown in Figure 2. The
main observation is that our proposed approaches are able
to process all our queries with typically less computation
time compared to exact SQL and better accuracy compared
to random sampling. In particular, for the sample-based ap-
proaches, we report the execution time of the queries until
the average relative error is below 5% and full bin complete-
ness is achieved. Therefore, we generate samples until the
specified goal or the limit of 100, 000 instances is reached.
In case that the limit is reached, we stop the sampling pro-
cedure and report the error of the results which is achieved
with the respective number of samples. Since exact SQL
and the probability-based approach do not rely on samples,
we only report the average relative error and the execution
time for these approaches.

In particular, if we investigate the execution time of the
random sampling approaches we can see that the SPN is
much more efficient in the sample creation while the quality

of the approximations is similar. This is due to the fact that
we do not have to deal with the entire dataset during query
time when using the SPN. Further improvement in efficiency
and therefore also in quality of the approximations can be
achieved by using the relevance sampling approach. More-
over, we can observe a slight increase of the execution time
for stratified sampling and the probability-based approach
on queries with a high number of groups (e.g. query F3.2 ).
The reason for this is that each group needs to be handled
individually by these approaches. Furthermore, our strati-
fied sampling approach outperforms the other sampling ap-
proaches in quality when the skeweness is high (e.g. queries
F4.1 and F5.2 ).

7. REFERENCES
[1] S. Acharya et al. The Aqua Approximate Query Answering

System. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, pages
574–576, 1999.

[2] S. Agarwal et al. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In Proceedings
of the 8th ACM European Conference on Computer Systems,
pages 29–42, 2013.

[3] A. Balke et al. Probabilistic Evaluation of Counterfactual
Queries. In Proceedings of the Twelfth AAAI National
Conference on Artificial Intelligence, AAAI’94, pages
230–237. AAAI Press, 1994.

[4] Bureau of transportation statistics.
http://www.transtats.bts.gov, 2017. Accessed: 2019-05-03.

[5] P. Eichmann et al. IDEBench: A Benchmark for Interactive
Data Exploration. In Proceedings of the Very Large Data Base
Endowment, volume 11, 2018.

[6] A. Galakatos et al. Revisiting Reuse for Approximate Query
Processing. Proceedings of the Very Large Data Bases
Endowment, 10(10):1142–1153, June 2017.

[7] J. M. Hellerstein et al. Interactive Data Analysis: the Control
Project. Computer, 32(8):51–59, August 1999.

[8] C. Jermaine et al. Scalable Approximate Query Processing with
the DBO Engine. ACM Transactions on Database Systems,
33(4):23:1–23:54, December 2008.

[9] A. Kalra et al. Online structure learning for feed-forward and
recurrent sum-product networks. In Advances in Neural
Information Processing Systems, pages 6944–6954, 2018.

[10] F. Li et al. Wander Join: Online Aggregation via Random
Walks. In Proceedings of the 2016 International Conference
on Management of Data, pages 615–629, 2016.

[11] A. Molina et al. Mixed Sum-Product Networks: A Deep
Architecture for Hybrid Domains. In AAAI, 2018.

4


