
Demonstrating Semantic SQL Queries over Relational Data
using the AI-Powered Database

José Luis Neves
IBM Systems

Poughkeepsie, NY 12601

jneves@us.ibm.com

Rajesh Bordawekar
IBM T. J. Watson Research

Center
Yorktown Heights, NY 10598

bordaw@us.ibm.com

Elpida Tzortzatos
IBM Systems

Poughkeepsie, NY 12601

elpida@us.ibm.com

ABSTRACT
This paper demonstrates key capabilities of AI-Powered
Database, a novel relational database system which uses an
unsupervised neural network model to facilitate semantic
queries over relational data. Our neural network model,
called db2Vec, applies vector embedding techniques on an
unstructured view of the database and builds a vector model
that captures latent semantic context of database entities
of different types. The vector model is then seamlessly in-
tegrated into the SQL infrastructure and exposed to the
users via a new class of SQL-based analytics queries known
as cognitive intelligence (CI) queries. The cognitive capa-
bilities enable complex queries over multi-modal data such
as semantic matching, inductive reasoning queries such as
analogies, and predictive queries using entities not present
in a database. We demonstrate the end-to-end execution
flow of the cognitive database using a Spark based proto-
type. Furthermore, we demonstrate the use of CI queries
using a publicly available enterprise financial dataset, with
text and numeric values. A Jupyter Notebook python based
implementation will also be presented.

1. INTRODUCTION
Relational Databases store information based on a user

defined schema that describes the data types, keys and func-
tional dependencies. Knowing the schema allows someone
to extract relevant information. For example, given a table
with a column containing financial transactions described
by individual amounts one can easily calculate the total
amount. Likewise, if there is a date associated with the
transaction, one can report the financial data by month,
quarter, or year. Database languages like SQL allow a user
to make these and more complex queries. However, the se-
mantic relationships represented by the data is mostly left
to the user interpretation as queries are executed and data is
re-organized. Further, traditional SQL queries rely mainly
on value-based predicates to detect patterns. For example,
the aggregate of all transactions within a timeframe or the

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and AIDB 2019.
1st International Workshop on Applied AI for Database Systems and Appli-
cations (AIDB’19), August 26, 2019, Los Angeles, California, CA, USA.

sorting of transaction amounts by decreasing order of value.
The meaningful relationship and interpretation between the
data of multiple columns is left to the user during the writ-
ing of the SQL query. Thus, the traditional SQL queries
lack a holistic view of the underlying relations, and are un-
able to extract and exploit semantic relationships that are
collectively generated by tokens in a database relation.

This paper discusses AI-Powered Database [5, 7, 8], a
novel relational database system, which uses an unsuper-
vised neural network based approach from Natural Lan-
guage Processing, called vector embedding, to extract latent
knowledge from a database table. The generated vector em-
bedding model captures inter- and intra-column semantic
relationships between database tokens of different types. For
each database token, the model includes a vector that en-
codes contextual semantic relationships. The AI-powered
database seamlessly integrates the model into the existing
SQL query processing infrastructure and uses it to enable
a new class of SQL-based analytics queries called Cogni-
tive Intelligence (CI) queries. CI queries use the model vec-
tors to enable complex queries such as semantic matching,
inductive reasoning queries such as analogies or semantic
clustering, and predictive queries using entities not present
in a database. In this paper, we demonstrate unique ca-
pabilities of AI-Powered Databases using an use-case where
SQL-based CI queries, in conjunction with traditional SQL
queries, are used to analyze a multi-modal relational database
containing text and numeric values. We evaluate this use-
case using a Spark-based AI-powered database prototype.

The rest of the paper is organized as follows: In Sec-
tion 2, we first summarize key design aspects of AI-powered
database and then discuss architecture of the Spark-based
prototype. Section 3 describes in detail the different types
of Cognitive CI queries and how they work with UDFs and
the vector embedding model. All the examples are real
SQL queries developed to generate the results presented
later in the paper. Section 4 outlines key features of the
AI-powered database system being demonstrated: data pre-
processing to build the word-embedding model, the word-
embedding model, design of the Spark-based CI queries over
multi-modal data, different examples of CI queries including
analysis explaining the results obtained for each type of CI
query. The data set used for demonstration purposes is a
publicly available dataset, namely all the financial transac-
tions recorded by the State of Virginia during the fiscal year
2015-16 [17]. Furthermore, we used the CI-queries to iden-
tify school spending per county and about how much the
state spent on average on students per county. Finally, Ap-

1



pendix A describes Python-based interfaces for AI-Powered
Database.

2. BACKGROUND AND SYSTEM ARCHI-
TECTURE

(1) Optional Training Phase

Vector
Domain

Text

Domain

Relational 

Domain

Relational 

Tables

External Text sources

Learned Vectors

Relational

System Tables

External 

Learned Vectors UDFs

CI Queries Relations

Tokenized Relations

(3) Query Execution Phase(2) Vector Storage Phase

Figure 1: End-to-end execution flow of a AI-
powered relational database

Figure 1 presents the three key phases in the execution
flow of a AI-powered database. The Training Phase takes
place when the database is used to train the model. It is only
executed when a new model is created or needs to be up-
dated. Our training approach is characterized by two unique
aspects: (1) Using meaningful unstructured text representa-
tion of the structured relational data as input to the training
process (i.e. irrespective of the associated SQL types, all en-
tries from a relational database are converted to text tokens
representing them), and (2) Using the unsupervised vector
embedding technique to generate meaning vectors from the
input text corpus. Every unique token from the input corpus
is associated with a meaning vector. The Vector Storage

Phase manages which vector models are used during the
query phase which could include the use of models trained
from user specified tables or models trained from external
sources. For externally trained models, the meaning of the
tokens embedded in each vector are learned from external
sources and not from specific user selected tables. Note that
the tokens must be the same as the ones used in the query
The Query Phase is where the user issues SQL statements to
extract information from one or more databases and in the
process he/she uses the trained model within specific SQL
statements. This can be seen as an inference step where
the Neural Network model (vectors) is used in SQL through
the use of User Defined Functions (UDFs) to drive a SQL
query with the learned information contained in the model.
Details of the phases are explained in depth in the next sec-
tions.

2.1 Data Preparation
The data preparation stage takes a relational table with

different SQL types as input and returns an unstructured
but meaningful text corpus consisting of a set of sentences.
This transformation allows us to generate a uniform seman-
tic representation of different SQL types. This process of
textification requires two stages: data pre-processing and
text conversion (Figure 2).

The textification phase processes each relational row sep-
arately and converts data of different SQL data types to
text. In some scenarios, one may want to build a model
that also captures relational column names. For such cases,
the pre-processing stage first processes the column names
before processing the corresponding data.

Externally

Relational Data

Preprocessing

Meaningful Text

Word

Embedding

NN

(A)

(B)

(C)

(D)

(E)

Text, Numeric Values, Images, ...

Trained Model

Pre−trained Model

Figure 2: Multiple stages in creating a vector em-
bedding model from relational tables

For SQL variables of VARCHAR type, preprocessing involves
one or more of the following actions: (1) prepend the column
attribute string to a SQL variable, (2) creating a single con-
cept token from a group of VARCHAR tokens, e.g., JPMorgan
Chase is represented as JPMorgan Chase, (3) creating a single
token for semantically similar sequences of VARCHAR tokens,
e.g., two sequences of tokens, bank of america and BANK

OF AMERICA, can be represented by a single compound to-
ken BANK OF AMERICA, and (4) Using an external mapping
or domain-specific ontologies to create a common represen-
tative token for a group of different input tokens. In ad-
dition to text tokens, our current implementation supports
numeric values and images (we assume that the database
being queried contains a VARCHAR column storing links to
the images).

In addition to text tokens, our current implementation
supports numeric values and images (we assume that the
database being queried contains a VARCHAR column storing
links to the images). For numeric values, we use three differ-
ent approaches to generate equivalent text representations:
(1) creating a string version of the numerical value, e.g.,
value 100.0 for the column name AMOUNT can be represented
by either AMOUNT 100.0 or ‘‘100.0’’, (2) User-managed
categorization: a user can specify rules to define ranges for
the numeric values and use them to generate string tokens
for the numeric values. For example, consider values for a
column name, Cocoa Contents. The value 80%, can be re-
placed by the string token choc dark, while the value 35%,
can be replaced by the string token choc med, etc., and (3)
user-directed clustering: an user can choose values of one or
more numerical columns and cluster them using traditional
clustering algorithms such as K-Means. Each numeric value
is then replaced by a string representing the cluster in which
that value lies.

For image data, we use approaches similar to ones used for
numerical values. The first approach represents an image by
its string token, e.g., a string representing the image path or
a unique identifier. The second approach uses pre-existing
classifers to cluster images into groups and then uses the
cluster information as the string representation of the im-
age. For example, one can use a domain-specific deep neural
network (DNN) based classifier to cluster input images into
classes [11] and then use the corresponding class informa-
tion to create the string identifiers for the images. The final
approach applies of-the-shelf image to tag generators, e.g.,
IBM Watson Visual Recognition System (VRS) [10], to ex-
tract image features and uses them as string identifiers for
an image. For example, a Lion image can be represented by
the following string features, Animal, Mammal, Carnivore,

2



BigCat, Yellow, etc.
Once text, numeric values and images are replaced by

their text representations, a relational table can be viewed as
unstructured meaningful text corpus to be used for building
a vector embedding model. For Null values of these types,
we replace them by the string column name Null. The meth-
ods outlined here can be applied to other data types such
as SQL Date and spatial data types such as lattitude and
longitude.

2.2 Model Training
Traditional word embedding approaches such as Word2Vec

(W2V) [14] or GloVe [15] build vector embedding models
from natural language text corpus using appropriate lan-
guage models (e.g., for English). As these approaches fail
to address various subtletiles with the relational data model
(e.g., supporting primary keys, different data types, or NULL
values), we have developed a novel vector embedding ap-
proach for relational tables, db2Vec. db2Vec operates on
a text corpus generated by one or more relational tables.
In this scenario, a text token in a training set can repre-
sent either text, numeric, or image data. Thus, the model
builds a joint latent representation that integrates informa-
tion across different modalities using untyped uniform fea-
ture (or meaning) vectors.

The db2Vec implementation varies from the traditional
NLP approaches in a number of ways:

• A sentence generated from a relational row is generally
not in any natural language such as English.1 There-
fore, W2V’s assumption that within a sentence, the
influence of any word on a nearby word decreases as
the word distances increases, is not applicable. In our
implementation, every token in a sentence has equal
influence on all other tokens in that sentence, irrespec-
tive of their positions; i.e., we view a sentence gener-
ated from a relational table as a bag of words, rather
than an ordered sequence.

• Unlike words in a natural language text, entities de-
rived from relational tables are typed (type defined
by the corresponding column attribute). db2Vec cap-
tures the type information for building the meaning
vectors, e.g., if an entity appears in two different re-
lational columns, db2Vec, treats the two instances as
separate entities and build two different meaning vec-
tors.

• For the traditional natural language usecases, the word
embedding models generate limited-sized vocabularies
(often defined by the language model). In our case,
since the string entities are generated from source val-
ues of different types (e.g., unique string identifier to
represent individual table rows), the vocabulary size
can be very large [4].

• For relational data, we provide special consideration to
primary keys. First, the traditional word embedding
approaches discard less frequent words from computa-
tions. In our implementation, by default, every token,
irrespective of its frequency, is assigned a vector. For
an unique primary key (with singular occurrence), its

1Currently, we assume that database tokens are specified
using the English language.

meaning vector represents the meaning of the entire
row.

• In some cases, one may want to build a model in which
values of particular columns are given higher weigh-
tage for their contributions towards meanings of neigh-
borhood words. Our implementation enables users to
specify different weight ranges or importance (High,
medium, or low) for different columns during model
training.

• The db2Vec training algorithm provides special treat-
ment for the entities corresponding to the SQL NULL

(or equivalent) values. The NULL values are processed
such that they do not contribute to the meanings of
neighboring non-null entities; thus eliminating false
similarites.

• The db2Vec implementation is designed to enable in-
cremental training, i.e. the training system takes as
input a pre-trained model and a new set of generated
sentences, and returns an updated model. This capa-
bility is critical as a database can be updated regu-
larly and one can not rebuild the model from scratch
every time. The pre-trained model can be built from
the database being queried, or from an external source
such as text corpus, graph, or a database table [5].

• db2Vec supports building vector embedding models
from multiple inter-related database tables linked via
primary key-foreign key relationships. Forming a train-
ing corpus from multiple tables is non-trivial, and db2Vec

supports different implementation options such as in-
tegrating multiple models built from different tables‘,
building models from fewer un-normalized tables, etc. [5].

2.3 Query Execution
Following vector training, the resultant vectors are stored

in a relational system table (phase 2). At runtime, the SQL
query execution engine uses various user-defined functions
(UDFs) that fetch the trained vectors from the system table
as needed and answer CI queries (phase 3). These UDFs
take typed relational values as input and compute semantic
relationships between them using uniformly untyped mean-
ing vectors. This enables the relational database system to
seamlessly analyze data of different types (e.g., text, nu-
meric values, and images) using the same SQL CI query.
Our current implementation [3] is built on the Apache Spark
2.4.0 infrastructure [2] using Scala. It runs on a variety
of processors and operating systems. The system imple-
mentation follows the AI-powered database execution flow
as presented in Figure 1. The system first initializes in-
memory Spark Dataframes from external data sources (e.g.,
relational database or CSV files), loads the associated word
embedding model into another Spark Dataframe (which can
be created offline from either the database being queried or
external knowledge bases such as Wikipedia), and then in-
vokes the Cognitive Intelligence queries using Spark SQL.
The SQL queries invoke Scala-based cognitive UDFs to en-
able computations on the meaning vectors. A Python based
implementation (Figure 3) is also provided, thus allowing
the system to be used by both the database and data sci-
ence communities.

The distinguishing aspect of cognitive intelligence queries,
contextual semantic comparison between relational variables,

3



is implemented using user-defined functions (UDFs). Thus,
the CI queries can support both the traditional value-based
as well as the new semantic contextual computations in the
same query. Each CI query uses the UDFs to measure
semantic similarity between a pair of sets (or sequences)
of tokens associated with the input relational parameters.
The core computational operation of a cognitive UDF is to
calculate similarity between a pair of tokens by computing
the cosine distance between the corresponding vectors. For
two vectors v1 and v2, the cosine distance is computed as
cos(v1, v2) = cos(v1, v2) = v1·v2

‖v1‖‖v2‖
. The cosine distance

value varies from 1.0 (very similar) to -1.0 (very dissimi-
lar). Each CI query uses the UDFs to execute nearest neigh-
bor computations using the vectors from the current word-
embedding model. Thus, CI queries provide approximate
answers that reflect a given model.

Figure 3: Spark Implementation of a AI-powered
relational database

Our current implementation supports four classes of CI
SQL queries: similarity based classification, inductive rea-
soning, prediction, and cognitive OLAP [5]. These queries
can be executed over databases with multiple datatypes: we
currently support text, numeric, and image data. The simi-
larity queries compare two relational variables based on sim-
ilarity or dissimilarity between the input variables. Each re-
lational variable can be either set or sequence of tokens. In
case of sequences, computation of the final similarity value
takes the ordering of tokens into account. The similarity
value is then used to classify and group related data. The
inductive reasoning queries exploit latent semantic informa-
tion in the database to reason from part to whole, or from
particular to general. We support five different types of
inductive reasoning queries: analogies, semantic clustering,
analogy sequences, clustered analogies, and odd-man-out.
Given an item from an external data corpus (which is not
present in a database), the predictive CI query can identify
items from the database that are similar or dissimilar to the
external item by using the externally trained model. Finally,
cognitive OLAP allows SQL aggregation functions such as
MAX(), MIN() or AVG() over a set that is identified by con-
textual similarity computations on the relational variables.

3. COGNITIVE INTELLIGENCE QUERIES
The basic UDF and its extensions are invoked by the SQL

CI queries to enable semantic operations on relational vari-
ables. Each CI query uses the UDFs to execute nearest
neighbor computations using the vectors from the current
word-embedding model. Thus, CI queries provide approxi-
mate answers that reflect a given model. For the purposes
of demonstrating the various CI queries a publicly avail-
able dataset is used as presented in Section 4. However,

lets briefly describe the data as it helps explain the differ-
ent types of CI queries detailed in this section. The dataset
contains all the expenditure transactions for the state of
Virginia for the fiscal year of 2015/2016. Each transac-
tion is characterized by several fields, namely VENDOR NAME,
AGENCY, FUND DETAIL, OBJECTIVE, SUB PROGRAM, AMOUNT, and
VOUCHER DATE. Through feature engineering two more fields
were added to the dataset, namely QUARTER and COUNTY, the
purpose explained at a later time. The VENDOR NAME field
names the institution the state had an expense with. This
institution can be a state, county or local agency, a phys-
ical person, a local, state or national business, etc. The
CI queries can be broadly classified into four categories as
follows:

3.1 Similarity Queries
In a traditional SQL environment, to determine similarity

of transaction expenses of a given customer against all the
other customers, one would have to determine the terms of
comparison, meaning which columns to compare followed
by gathering statistics for all the transactions of the given
customer. This process would have to be repeated for all
the other customers in the table. Finally, each customer
would be compared against the given customer and a score
calculated that represents similarity. Note that the terms
that define similarity would have to be defined prior to all
this process, meaning the rules amongst the columns that
define similarity. Also note, that the aforementioned process
becomes more complex and time consuming as the number
of features describing each transaction increases.

The alternative is a SQL Similarity CI query as illus-
trated in Figure 4 that identifies similar transactions to all
the transactions by a given VENDOR NAME, in this case the
County of Arlington. Assume that Expenses is a table that
contains all transaction expenses for the state of Virginia
whose Expenses.VENDOR NAME column contains each individ-
ual entity or customer the state had an expense with. To
identify which transactions have a similar transaction pat-
tern to a given customer one would use a SQL query with a
UDF, in this case proximityCust NameUDF(), that computes
similarity score between two sets of vectors, that correspond
to the fields describing each VENDOR NAME.

SELECT VENDOR NAME, proximityCust NameUDF(VENDOR NAME,
’$aVendor’) AS proximityValue
FROM Expenses
WHERE proximityValue > 0.5
ORDER BY proximityValue DESC

Figure 4: Example of a SQL CI similarity query:
find similar state customers based on expense trans-
action patterns

The query shown in Figure 4 uses the similarity score to
select rows with related Vendors and returns an ordered set
of similar Vendors sorted in descending order of their simi-
larity score. The similarity score is computed by calculating
the cosine distance between vectors, one being the vector of
the customer of interest, County of Arlington, and the other
the vector associated with Expenses.VENDOR NAME for all the
VENDOR NAMEs in the table Expenses. The similarity score is
sorted in descending order and the outcome presented in a
table as illustrated in Figure 5.

4



Figure 5: Most similar vendors to County of Arling-
ton

SELECT VENDOR NAME, similarityUDF(VENDOR NAME, ‘STEM’) AS
similarity
FROM Expenses
WHERE similarityUDF(VENDOR NAME, ‘STEM’) > 0.3
ORDER BY similarity DESC

Figure 6: Example of a prediction query: find state
customers that purchased items affected related to
STEM areas

Section 4 presents in detail analysis techniques that show
why the similarity results for County of Arlington are ac-
tually other counties and not some other random Vendor.
Note that the SQL command to get such results did not
filter any data before or after the SELECT statement with
respect to the 190950 unique Vendors that had one or more
transactions with the state of Virginia.

3.2 Dissimilar Queries
Dissimilarity is a special case of similarity where the query

will first choose rows whose Vendors have lower similarity
(e.g., < 0.3) to a given Vendor and the results ordered in an
ascending form using the SQL ASC keyword. This variation
returns Vendors that are highly dissimilar to a given Vendor
(i.e., the transaction with the state is with completely dif-
ferent agencies, objectives, funds and/or programs). If the
results are ordered in the descending order using the SQL
DESC keyword, the CI query will return Vendors that are
somewhat dissimilar to a given Vendor.

If one is interested to find the counties that are most dis-
similar to a given county, a dissimilar SQL CI query can
still be used to reduce the number of dissimilar Vendors
and extract from that subset any row which VENDOR NAME

contains the keyword COUNTY OF. However, the local govern-
ments within the State of Virginia are composed of Counties
and Independent Cities. As such the filter step can be en-
hanced to include Independent Cities or a new feature can
be added to the database that correctly identifies each Ven-
dor transaction if it is a local government transaction or not.
Engineering this feature into the dataset is also useful when
comparing the transactions/expenditures of the state with
its local governments with respect to other characteristics
not present in the expenditure database. For example, the
correlation of money spent by the state in K-12 and higher
education with the amount of students within each county
and independent cities that finish high school and university.

Similarity and dissimilarity queries can be customized to
restrict transactions to a particular time period, e.g., a spe-
cific quarter or a month. The query would use vector ad-
ditions over vectors to compute new vectors (e.g., create
a vector for transaction patterns of a Vendor Vendor A in
quarter Q3 by adding vectors for Vendor A and quarter Q3),
and use the modified vectors to find the target customers.

Another use case provides an illustration of a predictive

CI query which uses a model that is externally trained using
an unstructured data source or another database (Figure 6).
For this scenario, two completely different datasets are used.
The first dataset is the transactions dataset that describes
all financial expenditures of the state of Virginia. The sec-
ond dataset is a national dataset that describes the use of
STEM (Science, Technology, Engineering, Mathematics) re-
lated products, such as books, laboratory data, experiments,
etc. across all counties in United States. Consider a scenario
where one wants to know how much the state of Virginia
counties spend in STEM related activities and how does it
compare to other counties in US. This information can be
further analyzed with the number of students per county
actively engaged in studying STEM related areas at all lev-
els of education (High School, Undergraduate and Graduate
levels). This example assumes that we have built word em-
bedding models from two different sources, one for the State
of Virginia Expenditures and one for the tracking of STEM
spending across the United States organized by products,
area and purchaser in terms of county, school district, uni-
versity, etc. Note that each STEM subject is now associated
with the county and/or vendor across United States includ-
ing the counties and school districts of the State of Virginia.
Therefore, querying the STEM model one finds the spend-
ing in STEM across the US and can constraint it to the
State of Virginia. With such information one can correlate
the STEM spending with county and school district budgets
as well as the spending per student. As Figure 6 shows, the
similarityUDF() UDF is used to identify those transactions
that contain items similar to STEM. This example demon-
strates a very powerful ability of CI queries that enables
users to query a database using a token not present in the
database (e.g., STEM ). This capability can be applied to
different scenarios in which recent, updatable information,
can be used to query historical data. For example, a model
built using historical Department of Education data can be
used to determine what actions need to be taken to improve
spending on STEM areas as well as where and which levels
need a re-adjustment of funding to continuously improve or
keep spending in such as areas. Notice that similar mod-
els can be applied to different subjects, for example if one
wants to do a study on nutrition and county/school district
spending and relate it to state/national spending to improve
nutrition particularly for k-12 student population.

3.3 Cognitive OLAP Queries
Figure 7 presents a simple example of using semantic

similarities in the context of a traditional SQL aggrega-
tion query. This CI query aims to determine the maximum
amount a State Agency paid to in the Expenses table for
each Vendor that is similar to a specified Vendor, Vendor Y.
The result is collated using the values of the Vendor, the
Agency and ordered by the total expense paid. As illus-
trated earlier, the UDF proximityCust NameUDF defined for
similarity queries is also used in this scenario. The UDF
can use either an externally trained or locally trained model.
This query can be easily adapted to support other SQL ag-
gregation functions such as MAX(), MIN(), and AVG(). This
query can be further extended to support ROLLUP operations
over the aggregated values [9].

We can carry cognitive OLAP a step further. Let’s say
we want to find the Vendors that have a similar average
expense. First we perform a feature engineering step to find

5



SELECT VENDOR NAME, AGY AGENCY NAME, SUM(AMOUNT) as
max value
FROM Expenses INNER JOIN Agencies ON
Expenses.AGY AGENCY KEY = Agencies.AGY AGENCY KEY WHERE
proximityCust NameUDF(VENDOR NAME,’$Vendor Y’) >
$proximity GROUP BY VENDOR NAME, AGY AGENCY NAME ORDER BY
max value DESC

Figure 7: Example of a cognitive OLAP (aggrega-
tion) query

SELECT CLUSTER NUM, AVG(AMOUNT) as avg value
FROM Expenses
WHERE proximityCust NameUDF(VENDOR NAME,’$Vendor Y’) >
$proximity
GROUP BY CLUSTER NUM ORDER BY avg value DESC

Figure 8: Example of a cognitive OLAP query with
clustering

a clustering profile for the vectors of all Vendors in k clusters
using for example k-means clustering algorithm. We add
the cluster number to each Vendor in the original Expenses
table. Using the query illustrated in 8 we can identify the
clusters of vendors that on average have a similar transaction
amount with the state and list them in descending order by
the highest to the lowest average.

We are also exploring integration of cognitive capabilities
into additional SQL operators, e.g., IN and BETWEEN. For
example, one or both of the value ranges for the BETWEEN

operator can be computed using a similarity CI query. For
an IN query, the associated set of choices can be generated
by a similarity or inductive reasoning queries.

3.4 Inductive Reasoning Queries
A unique feature of word-embedding vectors is their ca-

pability to answer inductive reasoning queries that enable
an individual to reason from part to whole, or from par-
ticular to general [16, 18]. Solutions to inductive reason-
ing queries exploit latent semantic structure in the trained
model via algebraic operations on the corresponding vec-
tors. We encapsulate these operations in UDFs to support
following five types of inductive reasoning queries: analo-
gies, semantic clustering, and analogy sequences, clustered
analogies, and odd-man-out [16]. We discuss key inductive
reasoning queries below:

• Analogies: Wikipedia defines analogy as a process of
transferring information or meaning from one subject
to another. A common way of expressing an anal-
ogy is to use relationship between a pair of entities,
source 1 and target 1, to reason about a possible tar-
get entity, target 2, associated with another known
source entity, source 2. An example of an analogy
query is Lawyer : Client :: Doctor :?, whose answer
is Patient. To solve an analogy problem of the form
(X : Y :: Q :?), one needs to find a token W whose
meaning vector, Vw, is closest to the ideal response
vector VR, where VR = (VQ + VY − Vx) [16]. Recently,
several solutions have been proposed to solve this for-
mulation of the analogy query [12, 13, 14]. We have
implemented the 3COSMUL approach [12] which uses

SELECT VENDOR NAME,AGY AGENCY NAME, QUARTER, SUM(AMOUNT)
as max value
FROM Expenses INNER JOIN Agencies ON
Expenses.AGY AGENCY KEY = Agencies.AGY AGENCY KEY
WHERE analogyUDF(’$aVendor1’, ’$aVendor2’, ’$aVendor3’,
VENDOR NAME) > $proximity AND QUARTER == ’$aVendor3’
GROUP BY VENDOR NAME, AGY AGENCY NAME, QUARTER ORDER BY
max value DESC

Figure 9: Example of an analogy query

both the absolute distance and direction for identifying
the vector VW as

argmax
W∈C

cos(VW , VQ)cos(VW , VY )

cos(VW , VX) + ε
(1)

where ε = 0.001 is used to avoid the denominator be-
coming 0. Also, 3COSMUL converts the cosine simi-

larity value of c to (c+1)
2

to ensure that the value being
maximized is non-negative.

Figure 9 illustrates a CI query that performs an anal-
ogy computation on the relational variables using the
analogyUDF(). This query aims to find a Vendor from
the Expenditures table (Figure 13), whose relation-
ship to the category, Q3, or Third Quarter, is similar
to what Fairfax County Public Schools has with the
category, Q1, or First Quarter (i.e., if Fairfax County

Public Schools is the most prolific public school sys-
tem in terms of expenditures during the first quarter,
find such Vendors who are the most prolific spenders in
the third quarter, excluding Fairfax County Public

Schools). The analogyUDF() UDF fetches vectors
for the input variables, and using the 3COSMUL ap-
proach, returns the analogy score between a vector
corresponding to the input token and the computed
response vector. Those rows, whose variables (e.g.,
VENDOR NAME) have analogy score greater than a spec-
ified bound (0.5), are selected. To facilitate the anal-
ysis the results are filtered by the quarter of inter-
est (Q3) and sorted in descending order by the total
sum of expenditures and also listing the agency such
Vendor(s) had the most transaction with. Since anal-
ogy operation is implemented using untyped vectors,
analogyUDF() UDF can be used to capture relation-
ships between variables of different types, e.g., images
and text.

• Semantic Clustering: Given a set of input entities,
{X,Y, Z, ..}, the semantic clustering process identifies
a set of entities, {W, ..}, that share the most dominant
trait with the input data. The semantic clustering op-
eration has a wide set of applications, including cus-
tomer segmentation, recommendation, etc. Figure 10
presents a CI query which uses a semantic clustering
UDF, semclustUDF(), to identify verndors that have
the most common attributes with the input set of ven-
dors, e.g., vendorA, vendorB, and vendorC. For solving
a semantic clustering query of the form, (X,Y, Z ::?),
one needs to find a set of tokens Sw = {W1,W2, ..,Wi}
whose meaning vectors Vwi are most similar to the cen-
troid of vectors VX , VY , and VZ (the centroid vectors
captures the dominant features of the input entities).

6



SELECT VENDOR NAME, semClustUDF(’$vendorA’,’$vendorB’,
’$vendorC’,VENDOR NAME)
AS proximityValue FROM Expenses
HAVING proximityValue > $proximity
ORDER BY proximityValue DESC

Figure 10: Example of a semantic clustering query

Another intriguing extension involves using contextual sim-
ilarities to choose members of the schema dimension hierar-
chy for aggregation operations like ROLLUP or CUBE. For ex-
ample, instead of aggregating over all quarters for all years,
one can use only those quarters that are semantically similar
to a specified quarter.

4. EXPERIENCING THE AI-POWERED
DATABASE

For the evaluation purpose, we will be using a Linux-based
Spark Scala implementation of the AI-powered database sys-
tem [3]. This system is a x86 based system with 56 cores and
512G of physical memory. We plan to demonstrate both the
end-to-end features of the Spark based AI-Powered database
implementation as well as novel capabilities of CI queries.
The rest of the section provides a glimpse of the AI-DB sys-
tem by illustrating a real database usecase.

Figure 11: Flow of AI-Powered database from Input
to SQL query to output

Before describing the details, the flow of the system is
shown in Figure 11. The top part of the figure shows the
flow from a conceptual standpoint starting from a table as
an input to the training process. The model is fed into
the Query system where cognitive SQL queries and tradi-
tional SQL queries are used to analyze the data and generate
unique outputs. The bottom part of the figure illustrates the
process from a Spark data structure standpoint. The source
table is pre-processed to generate the input to the training
engine and is read by the query engine as a Spark dataframe.
Likewise, the output of the training engine is a vector model
also read into the system as a dataframe. Both dataframes
are input to the Spark SQL engine where the SQL state-
ments are executed. The AI component is processed in
the SQL engine by the use of UDFs used inside the SQL
statements. The outcome of the query is a new dataframe
containing the results of the type of query performed. Since
both tasks, the model training and processing of UDFs using

the model, are computer intensive operations they can ben-
efit from acceleration. Multi-threading is already exploited
during model training and multi-thread/distributed is ex-
ploited within the Spark engine at query time. Distributed
implementations and the use of GPU acceleration for vector
embedding model training [4] and nearest neighbor calcula-
tions [6] are currently being implemented and will be made
available soon.

4.1 Evaluation Setup
To illustrate the AI-DB execution, we use a publicly avail-

able expenditure dataset from the State of Virginia[17]. It
is a fairly large dataset spanning across 15 years of data.
Since the data is not uniform across all years (more infor-
mation was added as years went by and previous years data
were never updated for consistency). Since the number of
transactions per year is large we only used the state-wide
expenditure for 2015/2016 fiscal year (at least 5.3 Million
records) listing details of every transaction such as vendor
name, corresponding state agency, which government fund
was used etc, by 190951 unique customers or Vendors. Note
that Vendors can be individuals, and/or private and pub-
lic institutions, such as county agencies, school districts,
banks, businesses, etc. The data was initially organized as
separate files, each belonging to a quarter. A single file
was created and two other features engineered and added to
the dataset, mainly Quarter and County, identifying which
quarter the transaction happened and if the transaction is
associated with one of the 133 counties and independent
cities in the state. Other important information related to
this evaluation is the census and school population for the
State of Virginia as summarized in Figure 12. This informa-
tion is not present in the state’s expenditures data but can
be found in the United States Census Bureau Data website
(www.census.gov). Furthermore, county population and k-
12 county student population is based on web searches for
the respective population types. These may vary depending
on which year the estimates were done with respect to the
official census of 2010.

Figure 12: 2016 Census Information for the State of
Virginia

The reason why we look at the data from an educational
standpoint is because an analysis of the state expenditures
shows that the highest state expense is in education when
taking into account the cumulative expenses in both k-12
and higher education. In the fiscal year of 2015/16 15.7B
dollars where spent in education out of the 46.4B dollars of

7

https://www.census.gov


state expenditures. As such it is interesting to use CI queries
to see if they can help identify counties and school districts
with the most expense per student. Note that conclusions
made about if the average expense per student and/or area
is not the goal of this evaluation. Our objective is to demon-
strate that CI SQL queries when combined with traditional
SQL are an effective tool to retrieve such information.

"AGY_AGENCY_KEY","AMOUNT","FNDDTL_FUND_DETAIL_KEY",
"OBJ_OBJECT_KEY","SPRG_SUB_PROGRAM_KEY",
"VENDOR_NAME","VOUCHER_DATE","QUARTER”

238,1524.61,1400,247,2711,"BURDEN COST",
09/18/2015,"Q3"
238,2837.49,1400,247,2711,"BURDEN COST",
09/18/2015,"Q3"
238,554.75,1400,247,2711,"BURDEN COST",
09/18/2015,"Q3"
238,918.31,1400,247,2711,"BURDEN COST",
09/18/2015,"Q3"
238,11.36,1400,247,2711,"BURDEN COST",
09/18/2015,"Q3"

AGY_AGENCY_KEY_238 FNDDTL_FUND_DETAIL_KEY_1400 
OBJ_OBJECT_KEY_247 SPRG_SUB_PROGRAM_KEY_2711 
VENDOR_NAME_BURDEN_COST VOUCHER_DATE_09_24_2015 
QUARTER_Q3 AMOUNT_0

AGY_AGENCY_KEY_238 FNDDTL_FUND_DETAIL_KEY_1400 
OBJ_OBJECT_KEY_247 SPRG_SUB_PROGRAM_KEY_2711 
VENDOR_NAME_BURDEN_COST VOUCHER_DATE_09_24_2015 
QUARTER_Q3 AMOUNT_82

AGY_AGENCY_KEY_238 FNDDTL_FUND_DETAIL_KEY_1400 
OBJ_OBJECT_KEY_247 SPRG_SUB_PROGRAM_KEY_2711 
VENDOR_NAME_BURDEN_COST VOUCHER_DATE_09_24_2015 
QUARTER_Q3 AMOUNT_0

VENDOR_NAME_BURDEN_COST 0.139960 1.511725 1.413500 -0.252524 0.560768 -0.748131 0.094970 -0.308933 0.642339 
0.545144 -0.433508 0.745739 -0.027321 0.145872 -0.414213 0.949778 -1.091795 -1.086165 -0.913118 0.126721 
0.101270 1.008395 -1.058285 -0.218987 0.516127 -0.524986 -0.373136 -0.479130 0.903843 -0.170414 0.796281 
0.110054 -0.034227 -0.415399 -0.214878 0.329212 0.934236 -0.391224 0.026569 0.368643 -0.316187 -0.672016 -
0.021213 0.692628 -0.064971 -0.287692 0.025981 1.589496 0.487230 0.581495 0.546757 0.060010 0.602709 
0.573443 0.131169
.....
1.801001 0.571099 -0.806877 -0.040376 -0.451411 -0.347368 -0.104940 -1.601405 0.383498 -1.191644 -0.194865 
0.212549 -1.146270 0.167206 -0.127002 -0.241348 0.055484 -0.085913 0.187448 0.491312 -1.332215 0.062639 -
0.099263 -0.193136 0.966303 0.226783 1.207567 0.483473 0.311355 -0.283833 -0.187986 0.786420 -0.882176 
0.580108 -0.526009

(A)(A) (B)

(C)

Figure 13: Pre-processing the Virginia Expenditure
Dataset

Figure 13(A) illustrates a portion of the CSV file that rep-
resents the original database which contains both text and
numeric values. The first step in the pre-processing phase
is to convert the input database into a meaningful text cor-
pus (Figure 13(B)). This textification process is implemented
using Python scripts that converts a relational row into a
sentence. A Spark version embedded into Spark pipelines
is also available for textification and can be invoked from
the Spark shell or from within a Jupyter Notebook. Any
original text entity is converted to an equivalent token, e.g.,
a vendor name, BURDEN COST, is converted to a string token
VENDOR NAME BURDEN COST. For numeric values, e.g., amount
of 1524.61, the preprocessing stage first clusters the values
using the K-Means algorithm, and then replaces the numeric
value by a string that represents the associated cluster (e.g.,
AMOUNT 0 for value 1524.61). The resultant text document
is then used as input to build the vector embedding model
(db2Vec). The db2Vec generates a d dimensional feature
(meaning) vector for each unique string token in the vocab-
ulary. For example, Figure 13(C) presents a vector of di-
mension 300 for the string token VENDOR NAME BURDEN COST,
that corresponds to the value BURDEN COST in the original
database. Our evaluation will go over various pre-processing
stages in detail to explain the text conversion and model
building scripts.

4.2 Examples of CI Queries
Once the model is built, the user program can load the

vectors and use them in the SQL queries. Figure 4 presents
an example of a SQL CI similarity query. The goal of
the query is to identify vendors that have overall similar
transactional behavior to an input vendor over the entire
dataset (i.e., transacted with the same agencies with similar
amounts etc.) The SQL query uses an UDF,
proximityCust NameUDF(), which first converts the input
relational variables into corresponding text tokens, fetches

the corresponding vectors from the loaded model, and com-
putes a similarity value by performing nearest neighbor com-
putations on those vectors. Figure 14(A) presents the results
of this query for the vendor County of Arlington as al-
ready shown in Figure 5. In addition Figure 14(B) explains
why the transactions of top counties with the state are simi-
lar to the transactions of the County of Arlington with the
state. Each transaction is described by several fields, i.e.,
VENDOR NAME, AGENCY, FUNDS, OBJECTIVES, etc. The more
in common are the values of the respective fields the more
common the counties are and the higher they will rank in
similarity. The Table in Figure 14(B) can be explained as
follows, the County of Arlington had a total of 87 trans-
actions with the state, dealing with 2 agencies, 2 funds, 2
objectives and 15 state programs (Other fields are omitted
for simplicity). Similarly, the County of Giles had a total
of 78 transactions with the state, dealing with 3 agencies, 4
funds, 3 objectives, and 15 programs. Referring to the Agen-
cies row in the table, the next two numbers are the common
agencies and the number of transactions with common agen-
cies. As such, County of Giles had transactions with three
state agencies of which two are the same agencies the County
of Arlington dealt with. Of the 78 transactions, 74 were
with common agencies for both counties. Similar analysis is
performed for the other fields describing a transaction (e.g.,
Funds, Objectives, Programs, etc). For simplicity not all
the fields characterizing a transaction are included in the
table. Missing are the date of transaction, which quarter it
happened and if it is a county type transaction or not. Note
the last two items are engineered features added to extend
the analysis of the data.

SELECT VENDOR NAME, proximityCust NameUDF(VENDOR NAME,
’$aVendor’) AS proximityValue FROM Expenses
WHERE proximityValue > 0.5
ORDER BY proximityValue DESC

Figure 14: Most similar vendors to COUNTY OF
ARLINGTON

As described in Section 3.2 a similarity CI query can be
easily modified to implement a dissimilarity query by chang-
ing the comparison term and ordering in ascending order.
Since the original dataset contains all types of transactions
and Vendors this query would not be very useful. For exam-
ple, a single transaction performed by an individual would
be very different from the 87 transactions of the County of

Arlington. This is expected and would not provide any
useful knowledge. However, if the dissimilar results are fil-

8



val result2 df = spark.sql(s"""
SELECT VENDOR NAME,
proximityCust NameUDF(VENDOR NAME,’$aVendor’)
AS proximityValue FROM Expenses
HAVING (proximityValue < $proximity AND proximityValue >
-1)
ORDER BY proximityValue ASC""");
result2 df.filter(result2 df("VENDOR NAME").contains("COUNTY
OF")).show(100,false)

Figure 15: Example of a CI dissimilar query

tered down to focus on a particular group of transactions,
insight can be obtained that leads to other analysis. The
outcome of such query is shown in Figure 16, where it shows
the counties most dissimilar to the County of Arlington.
We know they are the most dissimilar by performing the
same analysis we performed for the similar case, illustrated
in Figure 14. As it was described for Figure 14(B), the ta-
ble in Figure 16(B) also compares how many of the fields are
common with the fields of County of Arlington and how
many transactions are common for such fields. As illustrated
in Figure 16(B) the three counties have almost nothing in
common with the County of Arlington except for County

of Fairfax-SWMP where of the nine objectives the 193 are
grouped on, one is common with County of Arlington for
22 of the 193 transactions. However, even for the other
fields there is no communality. Considering Agencies for
example, the County of Fairfax-SWMP dealt with 11 state
agencies with zero in common with the agencies dealt by the
County of Arlington and zero transactions in common.

Figure 16: Most dissimilar vendors to COUNTY OF
ARLINGTON

For the OLAP and Analogy examples we use another set
of Vendors from the Expenditures dataset. In this case we
are looking at the money spent by public school districts per
quarter to understand how much money the districts spend
for a given quarter when it is compared to a given district.
Such district is the Fairfax County Public Schools since
it is the largest district with 2x to 3x more students than
the other closest school districts, as illustrated in Figure 17,
where the table is ordered in descending order by population
and it includes the K-12 student population.

Figure 7 presents a simple cognitive OLAP query that
identifies Vendors and State Agencies that are similar to
a given Vendor, in this case the Fairfax County Public

Figure 17: Largest Counties in the State of Virginia
and corresponding K-12 student population

Schools. The query identifies the most common Agency
amongst all the Vendors that are similar to the target Ven-
dor adds up the transaction value associated with each Ven-
dor and presents the results in descending order as shown in
Figure 18. The first observation is the same observed with
similarity CI queries where the transactions of the different
Vendors have many fields and values in common. The sec-
ond observation is that the query automatically picks other
school districts indicating that these school districts work
with the same agencies, funds, objectives and programs as
Fairfax County Public Schools for the most part. The
third observation is that the sorted order of the CI query
result is very similar to the order the counties are sorted
from a population count standpoint as shown in Figure 17.
It does not follow the sorted order from a school population
standpoint.

SELECT VENDOR NAME, AGY AGENCY NAME, SUM(AMOUNT) as
max value
FROM Expenses INNER JOIN Agencies ON
Expenses.AGY AGENCY KEY = Agencies.AGY AGENCY KEY WHERE
proximityCust NameUDF(VENDOR NAME,’$Vendor Y’) >
$proximity GROUP BY VENDOR NAME, AGY AGENCY NAME ORDER BY
max value DESC

Figure 18: OLAP CI query results for Fairfax
County Public Schools

The immediate benefit of this query is that when com-
bined with data like the one described in Figure 17 it gives an
idea how much the Department of Education is spending
on each student per county. If there are other State Agencies
responsible for handling K-12 education expenses, one can
get a very good picture of the total amount per county and
per student within the county. With external data, such as
successful graduation rate and cost of operation (Buildings,
Materials, Teachers, Special Education, etc.) the State is
better positioned to determine if the money allocated per

9



county is producing the desired results. Note that the gath-
ering of information per county can be obtained directly
with multiple filter and aggregation SQL queries, particu-
larly after the County and Independent City identifier has
been engineered into the Expenditure dataset. However, the
SQL CI query significantly simplifies the access of such data
and without requiring that extra features are added to the
dataset. One can easily modify this query and perform the
same type of analysis to gather the amount spent per county
for a given program or a set of programs. The outcome of
such query is shown in Figure 19 and it shows that amongst
the top school districts the money spend in K-12 educa-
tion comes from the same program Standards of Quality for
Public Education(SOQ) directly addressing the article in the
State Constitution that requires the Board of Education to
prescribe standards of quality for the public schools. It is
worth mentioning that the first 100 entries obtained with the
OLAP CI query are all but one directly related to the public
schools and the money invested in education. Furthermore,
they show that the money comes from the SOQ program
or from federal assistance programs designed to help local
education. The entries also show that the budgets for pub-
lic education are not necessarily paid directly to the school
districts. In some cases the county or the county treasurer
are involved in the administration of the funds even though
they are being used for education. The semantic relation-
ships between the transactions contain such information as
obtained by the query.

SELECT VENDOR NAME, SPRG SUB PROGRAM NAME, SUM(AMOUNT) as
max value
FROM Expenses INNER JOIN Programs ON
Expenses.SPRG SUB PROGRAM KEY =
Programs.SPRG SUB PROGRAM KEY WHERE
proximityCust NameUDF(VENDOR NAME,’$Vendor Y’) >
$proximity GROUP BY VENDOR NAME, SPRG SUB PROGRAM NAME
ORDER BY max value DESC

Figure 19: OLAP CI query with focus on Programs
instead of Agencies

To demonstrate an analogy query we use the CI query
in Figure 9. As described, we are looking for Vendors that
are similar to the transactions of Fairfax County Public

Schools in a given quarter in terms of transactions with a
State Agency and another quarter. In a normal SQL query
one would collect all the transactions the Vendor had with
any State Agency in a given quarter. Repeat the process
for other quarters. Afterwards, one would compare both
sets of data to determine the Vendors and State agencies
that showed a similar behavior for a given quarter, collect
all the transactions associated with the Vendor and State
Agency and list the results in descending order by by the
aggregated amount value. Conversely, one can use a single

SELECT VENDOR NAME,AGY AGENCY NAME, QUARTER, SUM(AMOUNT)
as max value
FROM Expenses INNER JOIN Agencies ON
Expenses.AGY AGENCY KEY = Agencies.AGY AGENCY KEY
WHERE analogyUDF(’$aVendor1’, ’$aVendor2’, ’$aVendor3’,
VENDOR NAME) > $proximity AND QUARTER == ’$aVendor3’
GROUP BY VENDOR NAME, AGY AGENCY NAME, QUARTER ORDER BY
max value DESC

Figure 20: Example of Analogy CI query comparing
Fairfax County in Q1 with Vendors in Q3

analogy CI query and get a similar list without the exten-
sive comparisons. Once again, by combining the vectors of
vendors and quarters the CI query captures vendors and
state agencies describing transactions in the area of county
public education, see Figure 20. This demonstrates that
applying Equation 1 still results in a vector that contains
enough embedded information to extract Vendors and State
Agencies. Without any additional filtering the resulting list
shows other public school systems dealing with similar State
Agencies. Like the previous example this CI query can be
easily modified to analyze another field, for example a State
Program.

Table 1 presents preliminary performance results for exe-
cuting different CI queries using the Spark implementation.
We ran the CI queries on a single dual-socket x86 system
(56 cores) using the Local Spark mode (Spark 2.4.0), and
various driver memory configurations, e.g., 20, 40, 60 GB.
The UDFs were developed in Scala and the queries were
invoked as a Scala program. We executed several times of
queries, the ones which the values are presented in this pa-
per, from the Spark-shell running on the system described
previously, with the caveat that we were the only users of
the system. The results reported in 4.2 are based on repeat-
ing each query 5 times and averaging the runtimes by the
number of runs.

CI Query
Runtime (sec)

20 GB 40 GB 60 GB
Similarity 57 44 35
Dissimilarity 53 45 37
Analogy 55 47 38
OLAP Agencies 54 49 35
OLAP Programs 55 44 36

Table 1: CI Query runtimes from Spark-shell (Single
Node, Local Mode, Spark 2.4.0) and different driver
memory configurations

We attribute the poor performance of the SQL CI queries
to the following factors: (1) Lack of Spark SQL query op-
timizations leading to UDF being invoked for every row,
(2) Cost of individual Spark UDF invocation, (3) Cost of
Scala-based nearest neighbor computations, and (4) Lim-
ited degree of concurrency as the program was run on a sin-
gle node (using all available threads on the 2 x86 CPUs).

10



We are currently exploring a variety of optimization op-
tions, specifically, partitioning the computation across mul-
tiple Spark nodes in a scalable manner, exploring opportu-
nities for reducing UDF invocation calls, and improving the
Scala nearest neighbor performance via using SIMD vector
instructions or GPU accelerated kernels, and/or math li-
braries such as BLAS that efficiently implement dot product
and vector/matrix operations.

5. CONCLUSIONS
AI-Powered Database is an innovative relational database

system that uses the power of vector embedding models to
enable novel AI capabilities in database systems. Our imple-
mentation of vector embedding, db2Vec, uses unsupervised
learning to generate meaning vectors using database-derived
text. These vectors capture syntactic as well as semantic
characteristics of every database token. The vector embed-
ding model is then exposed to the users via a new class of
SQL based queries called Cognitive Intelligence (CI) queries.
The CI queries enable information retrieval from relational
databases by semantic context, not by entity values.

We demonstrated the unique capabilities of the AI-Powered
Database on a real enterprise financial dataset. We imple-
mented and evaluated a Spark-based implementation of our
system using a variety of cognitive intelligence queries. As
demonstrated in our experiments, the CI queries enable ap-
plication developers to get new semantic insights from rela-
tional data using existing SQL infrastructure. The end user
is not bothered with subtlies associated with exploiting the
neural network models: the only interface to the word em-
bedding model is via SQL. In addition, the new semantic
components can be integrated with traditional SQL oper-
ations such as grouping or aggregation. We are currently
working on applying the AI-Powered Database to a variety
of domains (e.g., financial, insurance, and retail), and eval-
uating approaches for optimizing performance of CI queries.

6. REFERENCES
[1] Jupyter notebook: Open-source web application for

creating and sharing documents, 2017.

[2] Apache Foundation. Apache spark: A fast and general
engine for large-scale data processing.
http://spark.apache.org, 2017. Release 2.2.

[3] R. Bordawekar. Cognitive Database: An Apache
Spark-Based AI-Enabled Relational Database System.
Spark+AI Summit 2018, June 2018.

[4] R. Bordawekar. GPU Acceleration of Word
Embedding Models for Large Datasets. Nvidia Global
Technical Conference (GTC), March 2019.

[5] R. Bordawekar, B. Bandyopadhyay, and O. Shmueli.
Cognitive database: A step towards endowing
relational databases with artificial intelligence
capabilities. CoRR, abs/1712.07199, December 2017.

[6] R. Bordawekar and P. D’Souza. Optimizing
Out-of-core Nearest Neighbor Problems on
Multi-GPU Systems using NVLink. Nvidia Global
Technical Conference (GTC), March 2017.

[7] R. Bordawekar and O. Shmueli. Using word
embedding to enable semantic queries in relational
databases. In Proceedings of the 1st Workshop on
Data Management for End-to-End Machine Learning,

DEEM’17, pages 5:1–5:4, New York, NY, USA, 2017.
ACM.

[8] R. Bordawekar and O. Shmueli. Exploiting latent
information in relational databases via word
embedding and application to degrees of disclosure. In
CIDR 2019, 9th Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings, 2019.

[9] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range queries in olap data cubes. In Proceedings of
the 1997 ACM SIGMOD International Conference on
Management of Data, pages 73–88, 1997.

[10] IBM Watson. Watson visual recognition service.
www.ibm.com/watson/services/visual-recognition/,
2016.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[12] O. Levy and Y. Goldberg. Linguistic regularities in
sparse and explicit word representations. In
Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, CoNLL
2014, pages 171–180, 2014.

[13] T. Linzen. Issues in evaluating semantic spaces using
word analogies. arXiv preprint arXiv:1606.07736,
2016.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In 27th Annual
Conference on Neural Information Processing Systems
2013., pages 3111–3119, 2013.

[15] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1532–1543,
2014.

[16] D. E. Rumelhart and A. A. Abrahamson. A model for
analogical reasoning. Cognitive Psychology, 5(1):1 –
28, 1973.

[17] State of Virginia. State of virginia 2016 expenditures.
http://www.datapoint.apa.virginia.gov/, 2016.

[18] R. J. Sternberg and M. K. Gardner. Unities in
inductive reasoning. Technical Report Technical rept.
no. 18, 1 Jul-30 Sep 79, Yale University, 1979.

APPENDIX
A. USING PYTHON INTERFACES

In this section, we describe the Python implementation
of AI-Powered Databases using two different approaches for
creating CI queries. One approach uses Pandas, a library
used for data analysis and manipulation, and sqlite3, a mod-
ule that provides access to the lightweight database, SQLite.
The other approach uses PySpark, the Spark Python API,
in a case where big data processing is required. In both
cases, we will use Jupyter Notebook [1], a web-based ap-
plication for executing and sharing code, to implement the
CI queries for interacting with the AI-Powered Database.

11



During demonstration, the audience will be able to interact
with the Jupyter notebook and modify the CI queries.

Pandas provides a rich API for data analysis and manipu-
lation. We use Pandas in conjunction with sqlite3 to imple-
ment the CI queries. Similarly as in the Scala approach, the
AI-Powered Database is initialized with the passed in model
vectors and data files the user intends to use for analysis.
During the initialization process, the data is converted from
a Pandas dataframe to a SQLite in-memory database. Then,
sqlite3’s create function method is used to create the cogni-
tive UDFs. From the user’s perspective, using pandas SQL
methods and the internal AI-Powered Database connection,
they can perform CI Queries to expose powerful semantic
relationships (Figure 21).

Figure 21: Example CI Queries in Jupyter Notebook
using Pandas and sqlite3

The PySpark approach is useful when the user needs to
perform big data processing. In the PySpark approach,
we call Scala UDFs from PySpark by packaging and build-
ing the Scala UDF code into a jar file and specifying the
jar in the spark-defaults.conf configuration file. Using the
SparkContext’s internal JVM, we are able to access and
register Scala UDFs and thus the user can use them in CI
queries within Python. We chose this approach instead of
the Python API’s support for UDFs because of the over-
head when serializing the data between the Python inter-
preter and the JVM. When creating UDFs directly in Scala,
it is easily accessible by the executor JVM and won’t be a
big performance hit. The CI queries in Python using PyS-
park look similarly as they do in the Scala implementation
(Figure 22).

Figure 22: Example CI Queries in Jupyter Notebook
using PySpark

B. JUPYTER NOTEBOOKS & SCALA
An alternative approach to Python implementations is to

use the Jupyter Notebooks running Scala Language a java
based programming language that unifies object-oriented
and functional programming. The purpose of this system
is to create a more tightly integrated solution to run in
Spark. As previously described the use of AI-powered data
base requires a training step where the contents of a ta-
ble is textified prior to being fed into the model genera-
tion code. In Section A the pre-processing step is writ-
ten in python. We migrated this processing step to Scala
and merge it around the Spark ML Pipelines architecture.
We created 3 new stages: Excluder which allows a user to
enumerate the columns in a table the user does not want
to include in model generation; Prefixer a stage to allow
the user to define the character for labeling text contents.
The convention used is to prefix the column contents with
the column name followed by the prefixer character cho-
sen by the designer; Clusterer is a stage to be used with
columns with numerical values, where the ideal set of clus-
ters is found and the numerics translated into the respective
cluster labels. With these extensions, a user can easily cre-
ate a Scala-based Jupyter Notebook that loads a table, does
some data manipulation, such as removing rows with cor-
rupt data, clean-up data to conform with requirements for
model generation. Once the table is ready a user can de-
fine the ML Pipeline stages and just execute the fit and
transform Spark methods to generate the textified version
of the data ready to train the model.

12

https://www.scala-lang.org/files/archive/spec/2.11/
https://spark.apache.org/docs/latest/ml-pipeline.html

	Introduction
	Background and System Architecture
	Data Preparation
	Model Training
	Query Execution

	Cognitive Intelligence Queries
	Similarity Queries
	Dissimilar Queries
	Cognitive OLAP Queries
	Inductive Reasoning Queries

	Experiencing the AI-Powered Database
	Evaluation Setup
	Examples of CI Queries

	Conclusions
	References
	Using Python Interfaces
	Jupyter Notebooks & Scala

